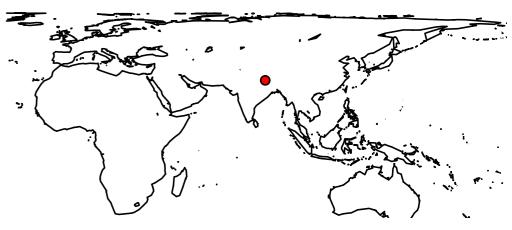
Referential Effects on Grammatical Relations

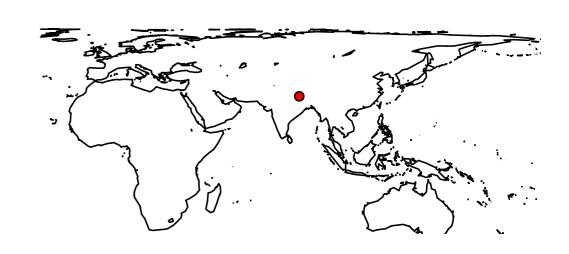

Goals of this talk

- 1. Survey referential effects: what types are there?
- 2. Show that referential effects correspond to specific processing patterns in the brain, i.e. they are "psychologically real".
- 3. But all these processing effects are closely tied to languagespecific marking patterns. There are no universal effects!
- 4. Contrast this to theories by Silverstein (1976) and Comrie (1981), which predict referential effects to follow universal principles.
- 5. Show that the Silverstein/Comrie theory has no empirical support.
- 6. Conclude that referential effects are local and areal, but not universally-driven phenomena.

Two kinds of effects

- 1. Local effects: arguments are treated according to their own referential properties
- Relational effects: arguments are treated according to how their referential properties relate to those of another argument.

- Differential A and differential O treatment by case
 - (1) Nepali (Indo-European)
 - a. ma sāthi-lāi dekh-chu.
 1s[NOM] friend-DAT see-1sPST
 'I see the/a friend.'
 - b. ma ghar dekh-chu. 1s[NOM] house[NOM] see-1sPST 'I see the/a house'
 - c. gāi-le sāthi-lāi dekh-cha. cow-ERG friend[NOM] see-3sNPST 'The cow sees the/a friend.'


Bickel in press

- Differential O treatment by agreement
 - (2) Chintang (Sino-Tibetan)
 - a. huïsa-ŋa maʔmi copt-o-k-o.

 DEM-ERG person[-NOM] [3sA-]look-3sP-NPST-3sP

 'He looks at the people.'
 - b. hungo ma?mi cop-no.

 DEM[-NOM] person[-NOM] [3sS-]look-NPST 'He/she looks at people.' (in general)

5

fieldnotes

Differential O treatment by agreement

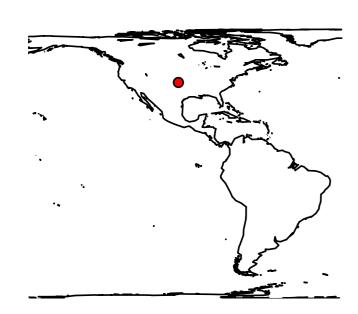
- (3) Chintang ditransitives with NOM-NOM case frame
 - a. huĩsa-ŋa Joge citthi hakt-o-ko.

 DEMs-ERG J.[-NOM] letter[-NOM] [3sA-]send-3sP-NPST

 'He sends the letter to Joge.'
 - b. huŋgo kam citthi hak-no.

 DEMs[-NOM] 3sPOSS-friend[-NOM] letter[-NOM] [3sS-]send-NPST

 'He sends letters to friends.' (in general)
 - c. * hungo Joge/u-kam citthi hak-no.


 DEMs=NMLZ[-NOM] J.[-NOM]/3sPOSS-friend[-NOM] letter[-NOM] [3sS-]send-NPST Intended: 'He sends letters to Joge/his friend.' (in general)

6

- (4) Chintang ditransitives with NOM-LOC case frame
 - a. (a-)kam (a-)khim-be paŋs-u-hẽ. (1sPOSS-)friend[-NOM] (1sPOSS-)house-LOC send-3sP-1sA.PST 'I sent (a/my) friend to (a/the/my) house.'
 - b. (*a-)kam (*a-)khim-be **paŋs-e-hẽ**. (1sPOSS-)friend[-NOM] (1sPOSS-)house-LOC send-PST-1sS.PST 'I sent friends home.' (in general)

fieldnotes

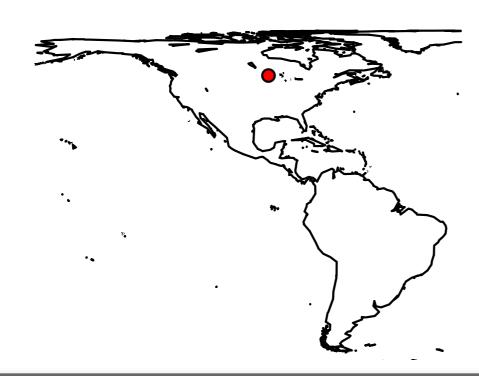
- Differential A treatment by agreement
 - (5) Kiowa (Kiowa-Tanoan; Watkins & McKenzie 1984)
 - a. * téː-gyà é-thêm. ice-NML **3sA>3cP**-break.PFV Intended: 'The ice broke it.'
 - b. $t\acute{e}_{x}$ -gyà phíx nò \acute{o}_{y} hò-dè \acute{e}_{z} -thém-gyá. ice-NML [3sS]-heavy and DS there-DIR **3cS**-break-**DETRANSITIVE**.PFV 'The ice; is heavy, and therefore it* $_{i,i}$ got broken.'

 Differential marking of A according to the referential relationship between A and P (Givón 1994):

 $A \gg P$: Active, A = NOM

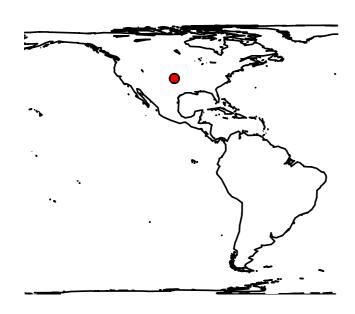
 $A \ll P$: Passive, A = oblique

• cf. DeLancey 1981; Bresnan et al. 2001:

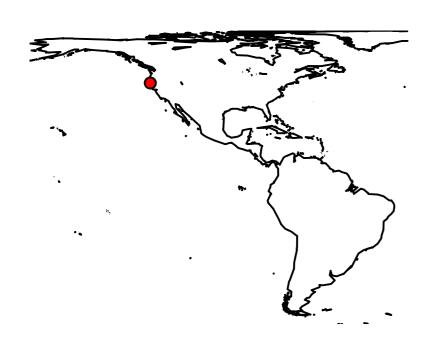

	Active	Passive	
1/2 > 3	100%	0%	I saw a car [?] A car was seen by me
3 > 1/2	97%	3%	A car hit me I was hit by a car

Switchboard Corpus, N=6732, Voice x Scenario: Fisher Exact Test, p < .0001 (two-sided)

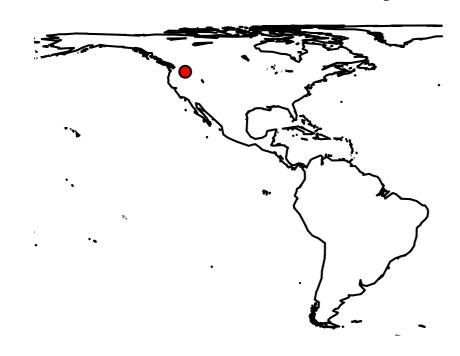
- Direct/inverse-marking (like active/passive but keeping transitivity constant)
 - (7) Central Ojibwa (Algic; Rhodes 1976)
 - a. aw aniniw w-gii-waabam-aa-n niw kweew-an.

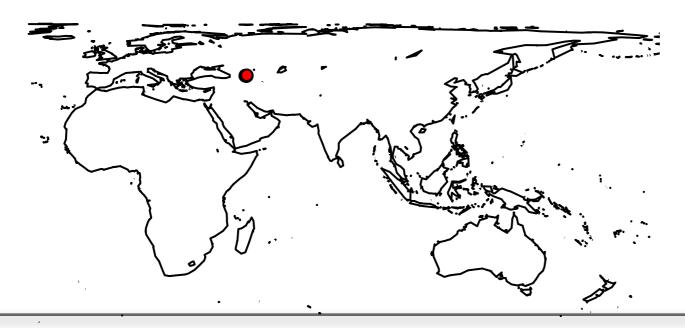

 DEM[-PROX] man 3-PST-see-DIR-3OBV DEM.OBV woman-OBV

 'The man saw the woman.'
 - b. aw **kweew** w-gii-waabam-**igw**-an niw aniniw-**an**.
 DEM[-PROX] woman 3-PST-see-INV-3OBV DEM.OBV man-OBV
 'The man saw the **woman**.'

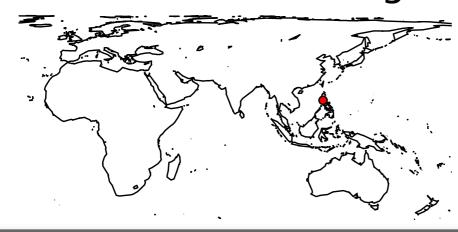


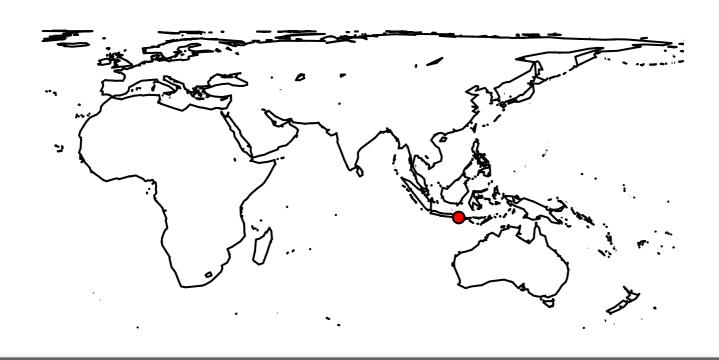
- Choice is fixed ("semantic") with inanimates and 1/2 person:
 - (8) Central Ojibwa (Algic; Rhodes 1976)
 - a. w-gii-miigshkaa-go-on mtigo-on nJohn.
 3-PST-hit.the.mark-INV-3OBV tree-OBV John[-PROX]
 - b. * w-gii-miigshkaw-aa-n nJohn-an mtig. 3-PST-hit.the.mark-DIR-30BV John-OBV tree[-PROX] 'The tree hit John.'
 - c. n-waabam-aa-Ø. 1-see-DIR-3 'I see him.'
 - d. n-wābam-igw-Ø. 1-see-INV-3 'He sees me.'


- Fixed choice can also affect passives:
 - (6) Picurís (Kiowa-Tanoan; Zaharlick 1982)
 - a. ta-mon-mia-7an sənene-pa. 1s-see-PASS-PST man-OBL 'The man saw me.'
 - b. mon-mia-?an (sənene-pa).see-PASS-PST man-OBL'S/he was seen (by the man).'

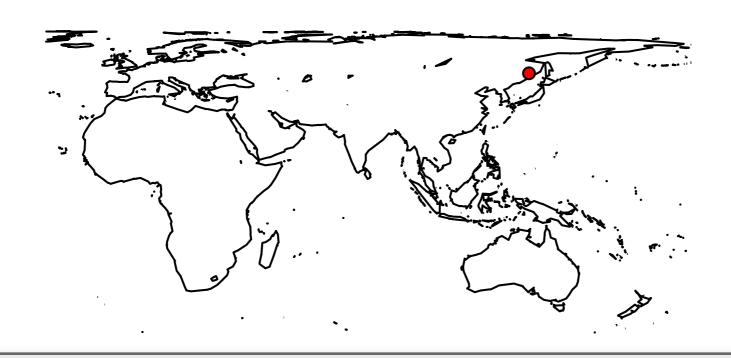

- Relational effects without marking the relation on the verb:
 Case on O in 3>1/2
 - (9) Yurok (Algic; Robins 1958:21)
 - a. ke?l nek ki newoh-pa?. 2sNOM 1s[NOM] FUT see-2>1s 'You will see me.'
 - b. yo? nek-ac ki newoh-pe?n. 3sNOM 1s-ACC FUT see-3s>1s 'He will see me.'

- Relational effects without marking the relation on the verb: case on A in 3>1/2
 - (10) Umatilla Sahaptin (Plateau; Rigsby & Rude 1996)
 - a. ɨwínš i-tu.xnana yáamaš-na. man[-NOM] 3sSBJ-shot mule.deer-OBJ 'The man shot a mule deer.'
 - b. iwinš-nim=nam i-q'inu-ša. man-ERG=2s 3sSBJ-see-IPFV 'The man sees you.'


- Relational effects without marking the relation on the verb: agreement (with whatever is higher)
 - (11) Icari Dargwa (Nakh-Daghestanian; Sumbatova & Mulatov 2003)
 - a. du-l Murad uc-ib=da. 1s-ERG M.[NOM] catch.m.PFV-PST=1s 'I caught Murat.'
 - b. Murad du uc-ib=da.
 M.[NOM] 1s[NOM] catch.m.PFV-PST=1s
 'Murad caught me.'


- Generalization to all arguments and even adjuncts:
 Autronesian voice systems
 - (12) Tagalog (Austronesian; Schachter & Otanes 1972)
 - a. bumili ang=lalake ng=isda sa=tindahan.

 PFV.A.buy NOM=man OBL=fish LOC=store


 'The man bought fish at the/a store.'
 - b. binili ng=lalake ang=isda sa=tindahan. PFV.P.buy OBL=man NOM=fish LOC=store 'The/a man bought the fish at the/a store.'
 - c. binilhan ng=lalake ng=isda ang=tindahan PFV.L.buy OBL=man OBL=fish NOM=store 'The/a man bought fish at the store.'

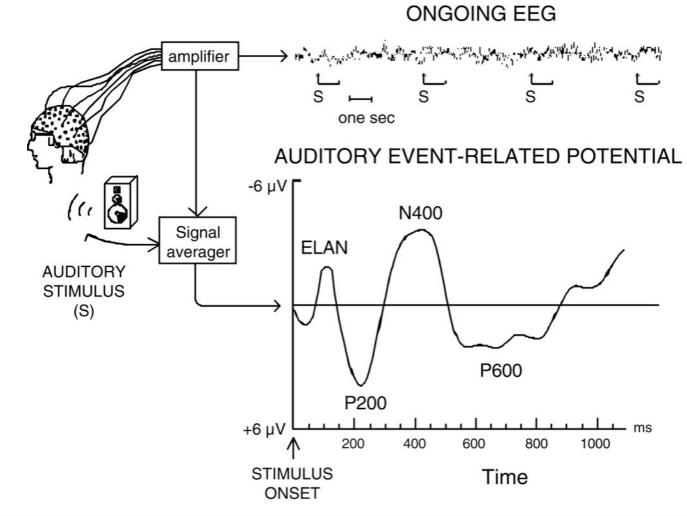
- Austronesian effects without marking the relation on the verb
 - (13) Meno-Mené Sasak, Puyung variety (Austronesian; Shibatani 2008, 2009)
 - a. **Alii** wah=en kirim-an aku surat Ali[-PROX] PERF=3 send-APPL I[-ABS] letter 'Ali sent me a letter.'
 - b. **Aku** wah=en kirim-an surat isiq Alii I[-PROX] PERF=3 send-APPL letter **ERG** Ali 'Ali sent **me** a letter.' ('I was sent a letter by a Ali.')

- Between active/passive and direct/inverse: Eurasian languages where A_{passive} is in a core case
 - (14) Udihe (Tungusic; Nikolaeva & Tolskaya 2001)
 - a. bi sin-du xeleba-wa bu-o:-mi. 1sNOM 2s-DAT bread-ACC give-PST-1s 'I gave (you) some bread.'
 - b. si min-du gida-si-u-zeŋe-i. 2sNOM 1s-DAT spear-V-PASS-FUT-2s 'You will be killed by me.'

Interim summary: variables of referential effects

- Scope: local vs. relational
 - Direction: marked vs. not marked
 - Type of direction: general (">") vs. specific (e.g. "3>1/2")
- Locus: dependent-marking (case, adpositions) vs. headmarking (agreement)
- Role sets: which roles are affected? (S, A, P, Adjuncts?)
- Categories:
 - fixed ("semantic"): person, animacy, number, cardinality etc.
 - flexible ("pragmatic"): topicality, definiteness, focus etc.

Diversity


- Given all these variables, it makes no sense to debate
 - what is a "real" passive or a "real" inverse
 - what is "true" differential object marking and what isn't
- Instead, we need a Multivariate Typology (Bickel 2007, in press)

A first attempt at a Multivariate Typology of ref. effects

Alternation:	Scope	Locus	Flexibility	Direction Marking	Direction Type	Alternating Role Sets	Categories
Nepali ERG-NPST	local	dependent	mixed	NA	NA	{A}	focus, animacy
Nepali DAT	local	dependent	mixed	NA	NA	{P}	definiteness, animacy
Chintang P-AGR	local	head	flexible	NA	NA	{P,T,G}	genericity, expectedness (
Kiowa A-AGR	local	head	fixed	NA	NA	{A}	animacy
English PASS	relational	double	flexible	on head	>	{S,A,P}; {A}; {P}	topicality, person
Ojibwe INV	relational	double	mixed	on head	>	{S,A,P}; {S,A,P}	topicality, person
Udihe PASS	relational	double	flexible	on head	>	{S,A,P}; {A,G}; {P}	topicality (?), person
Picurís PASS	relational	double	mixed	on head	>	{S,A,P}; {A}; {P}	topicality, person
Yurok ACC/NOM	relational	dependent	fixed	none	1/2>3	{P}	person
Umatilla ERG/NOM	relational	dependent	fixed	none	1/2>3	{A}	person
Icari AGR	relational	head	fixed	none	1/2>3	{A}; {P}	person
Tagalog	relational	double	flexible	on head	>	{S,A,P,X}; {S,A,P,X}	topicality
MM-Sasak	relational	dependent	flexible	none	>	{S,A,P,X}; {S,A,P,X}	topicality

Taking stock

- in many languages, the definition of grammatical relations (rules of case marking, agreement and other kinds of syntactic behavior) is sensitive to local or relational effects of referential properties
- when this happens, it is "psychologically real", leaving traces in language processing

Evidence from incremental language comprehension

- Local effects in some languages:
 - English (Weckerly & Kutas 1999):

The [poet] vs. The [poem] ... N400

• Hindi (Choudhary 2010):

[Saroj-ne] vs. [tāṅga-ne] ... N400

Saroj-ERG horse.carriage-ERG

Evidence from incremental language comprehension

- But no such effects in other languages
 - German (Bornkessel & Schlesewsky 2006)

```
Der [Mann].... vs. Der [Stein] .... the.NOM man the.NOM stone
```

Turkish (Demiral et al. 2008)

```
dün [adam].... vs. dün [taş]....
yesterday man.NOM yesterday stone.NOM
```

- Suggests that the effects are caused by language-specific associations:
 - English initial NP, Hindi ERG expects [+ANIM]
 - Turkish, German NOM don't

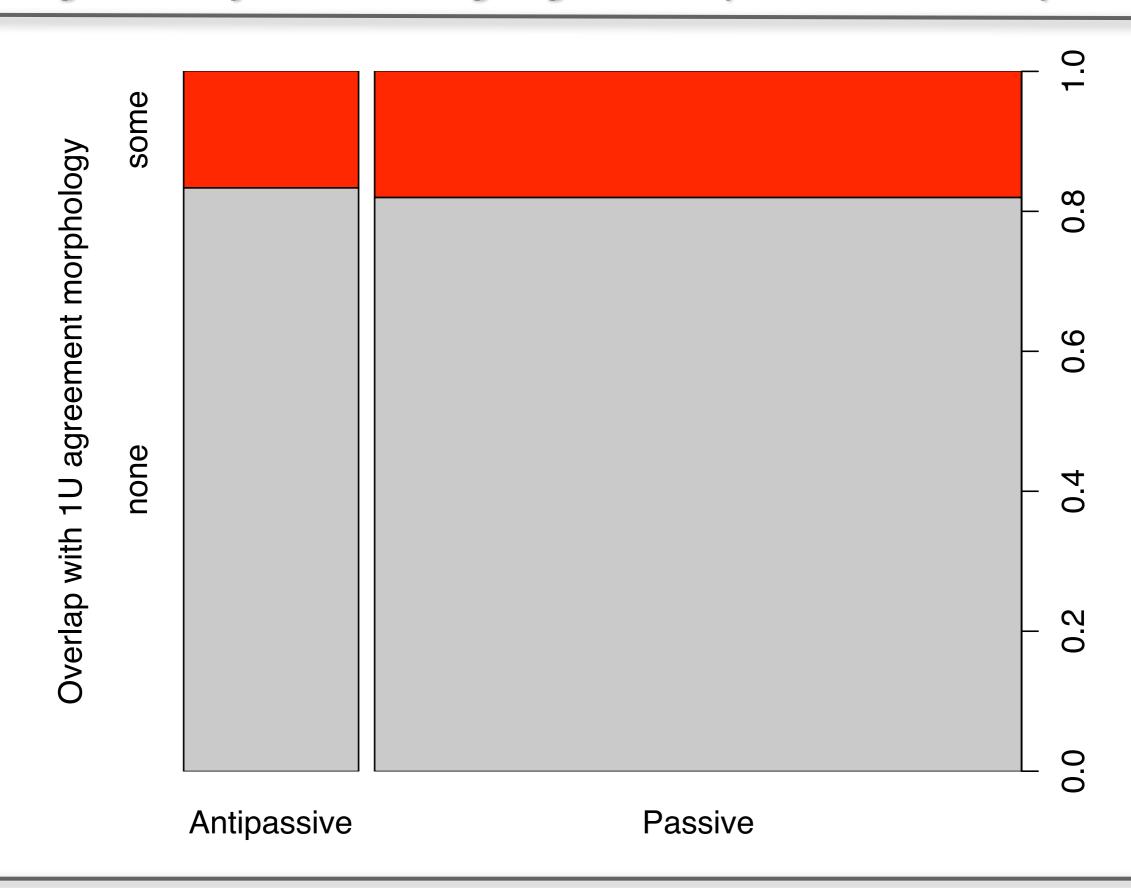
Theories

- The effects may not be universal but depend on languagespecific associations of reference (animacy) and markers (i.e. ultimately, it is an issue of the semantics of these markers)
 - Hypothesis: referential effects are not uniform across languages
 - This is the Null Hypothesis ('Anything goes!')

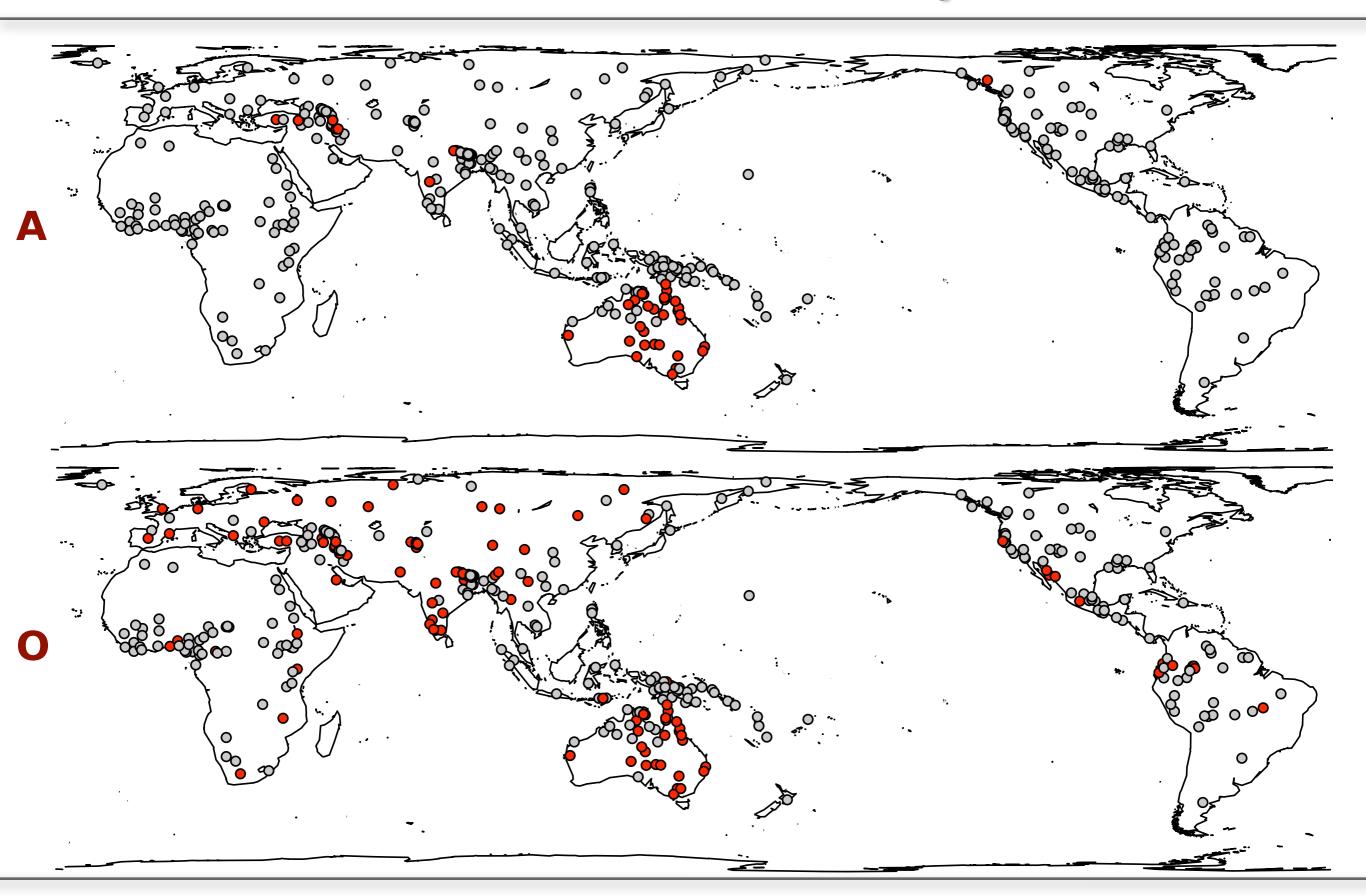
Theories

- Counter-hypothesis (Silverstein 1976, Comrie 1981): referential effects result from a universal "ideal":
 - A=ANIMATE P=INANIMATE
 - Therefore, the odds for special marking ("highlighting") should
 - increase for P
 - decrease for A
 - on a universal scale 1/2 > 3 > animate > inaminate (or something like that)

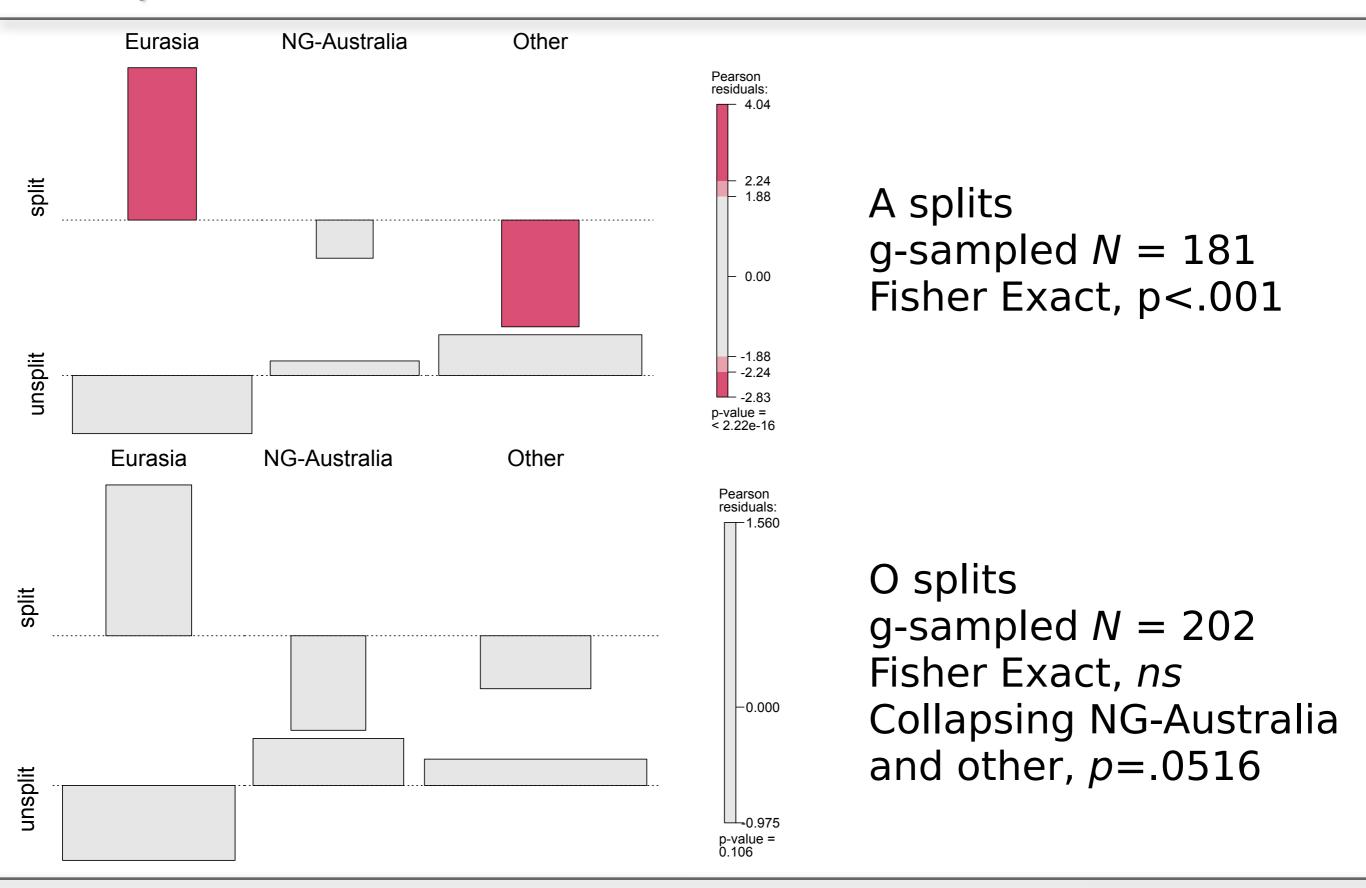
First doubt on the Silverstein/Comrie theory:


While some languages have made passives obligatory for A « P, other languages use antipassives for this!

- Puma (Sino-Tibetan; Bickel et al. 2007)
 - a. khokku-a ke **kha**-en-a. 3s-ERG 1pi[NOM] 1pP-[3sA-]hear-PST 'S/he heard us'
 - b. khokku **kha**-en-a. 3s[NOM] **ANTIP**-[3sS-]hear-PST 'S/he heard someone/people.' or 'S/he listened so as


	1sP	1nsiP	1deP	1peP	Antipassive/Intransitive	
2sA	tлепоŋ		khatлena		khatnena	
2dA	tлепопслп		khatлenci		khatnenci	
2pA	tлепо <i>дп</i> лд		khatлennin		khatsennin	
3sA	рлепоп	khaena	рлепсіка	рлеппіпка	khaena	
3dA	рлепопслп	кһарлепсі	пірлепсіка		кһарлепсі	
3рА	пірлепоп	кһатлепа	пірлеппіпка		кһатлепа	

Bickel & Gaenszle 2007


A rough survey of 197 languages with passives or antipassives:

Second doubt on the Silverstein/Comrie theory

Areal patterns

Referential scales as ordered predictors

Odds for markedness ~ rank on scale, as a regression model:

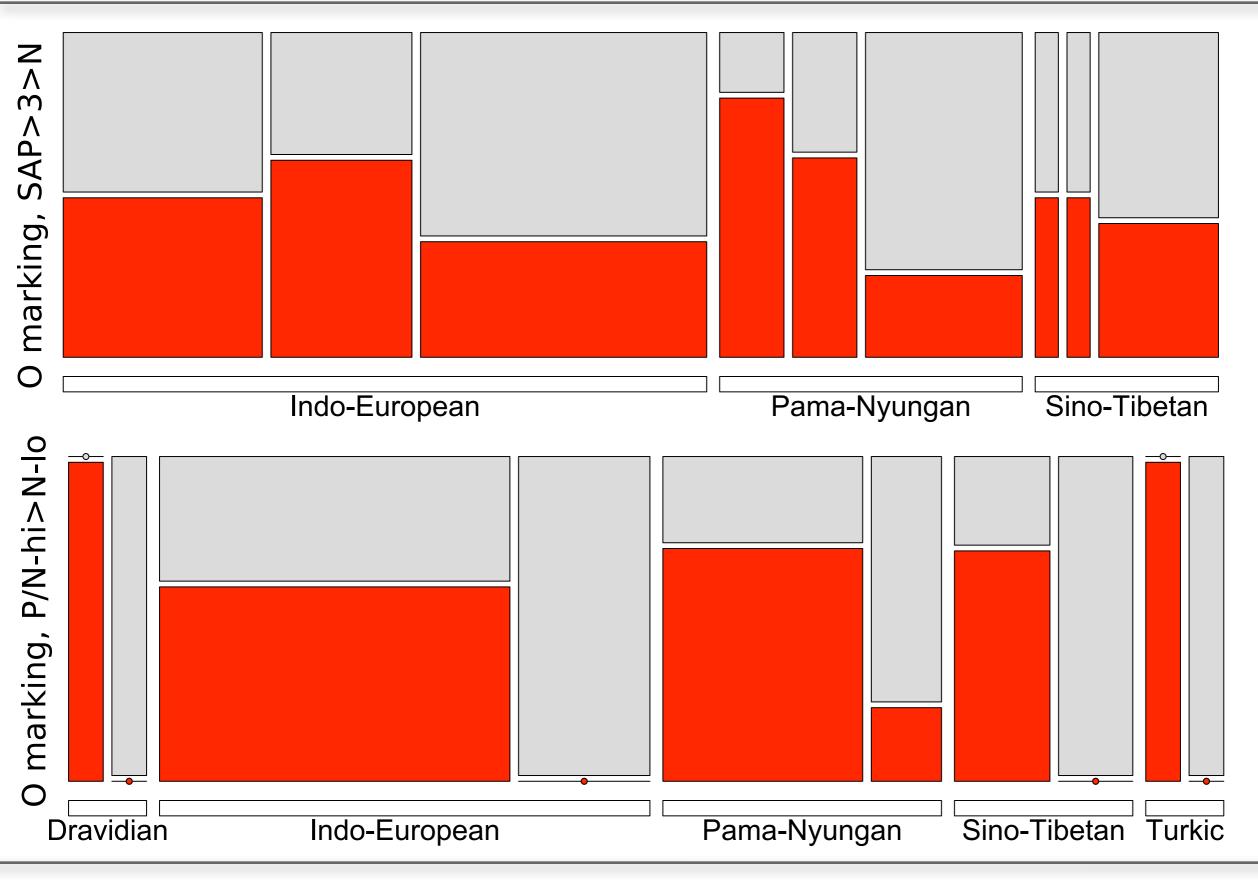
a. For A:
$$\log(\frac{\pi(\text{marked})}{\pi(\text{unmarked})}) = \alpha - \beta_1 \Xi + \beta_j O... + \beta_k \Omega$$

b. For O:
$$\log(\frac{\pi(\text{marked})}{\pi(\text{unmarked})}) = \alpha + \beta_1\Xi + \beta_jO... + \beta_k\Omega$$

An example: Khufi (Indo-Iranian, Sokolova 1959)

- (18) Khufi (Indo-European; Sokolova 1959)
 - a. **mo** zænat. **1sOBL** kill.PRS 'Kill me!'
 - b. atā waz bōwár na kum.
 but 1sDIR trust NEG do.1sPRS
 'But I dont believe (it).'
 - c. **máš**=am Arpamíšk na talæpt. **1pDIR**=1pPST Arpamishk NEG look.for.PST 'We did not look for Arpamishk.'
 - d. dāð māš na wín-an. 3pMIDDLE.DIR **1pDIR** NEG see.PRS-3p 'They don't see us.'

PoS	SG > NSG scale rank	O.marked	
1sgPro	1	marked	
2sgPro	1	unmarked	
3sgPro	1	marked	
1plPro	2	unmarked	
2plPro	2	unmarked	
3plPro	2	marked	
N-def	NA	marked	
N-indef	NA	unmarked	


Referential scales as ordered predictors

- Data: split systems from families with at least 5 members
- Control areas: Eurasia vs. the rest of the world (as suggested by the geography plots)

Referential scales as ordered predictors: results

	Scale E	Best fitting model	LR	р
Α	1>2>3>N	Ξ+F+A+Ξ·F	14.37	0.004
	SAP>3/N	Ξ+F+A+Ξ·F	6.06	0.007
	SAP>3>N	Ξ+F+A+Ξ·F	12.71	0.005
	SAP>3>N-high>N-low	Ξ+F+A+Ξ·F	18.18	0.001
	P>N	Ξ+F+A+Ξ·F	12.51	0.003
	P/N-high>N-low	Ξ+F+A+Ξ·F	15.91	0.001
	nsg>sg	F	3.15	0.039
	sg>nsg	F	5.51	0.033
	Empirical scale	Ξ+F+A+Ξ·F	10.52	0.002
0	1>2>3>N	Ξ+F+A+Ξ·A	10.2	0.006
	SAP>3/N	Ξ+F+A+Ξ·A	2.90	0.028
	SAP>3>N	Ξ+F+A+Ξ·A	6.00	0.005
	SAP>3>N-high>N-low	Ξ+F+A+Ξ·F	33.93	0.001
	P>N	Ξ+F+A+Ξ·A	2.13	0.037
	P/N-high>N-low	Ξ+F+A+Ξ·A	12.43	0.001
	nsg>sg	α		ns
	sg>nsg	α		ns
	Empirical scale	Ξ+F+A+Ξ·F	34.76	0.001

Referential scales as ordered predictors: two examples

Discussion: why does the Silverstein/Comrie hypothesis fail?

- Not enough data.
 - We systematically searched for split systems. That's it.
 - If there are only so few instances, how should that ever reflect a universal?
- Substantial differences of splits between families and areas point to local, not universal developments:
 - once in Eurasia
 - once in Australia
 - a few times elsewhere

Conclusions from the test

- 1. Not enough evidence to reject the null hypothesis.
- 2. Strong evidence for areality and family signatures suggests that languages have specific splits because they
 - copy them from their neighbors
 - inherit them from their ancestors
 - ► Splits are local, not universal phenomena.

General conclusions

- For most languages, the exact mechanisms of referential effects are not well understood.
- More detailed empirical groundwork needed on more languages = key goal of the EuroBABEL RHIM project (www.rhim.uni-koeln.de, coordinated by Katharina Haude, CNRS Paris)