Universität

Zürich ${ }^{\text {VIn }}$
Department of Comparative Linguistics

Kiranti in Global Perspective

Balthasar Bickel

Polysynthesis

Chintang:

	1s	1di	1pi	1de	1pe	2s	2d	2p	3 s	3ns	intransitive			
1s						tupna2ã tupna2ãnin tupnehẽ matupyoknehẽ	tupna?ãce tupna?ãceniŋ tupnace matupyoknace	tupnałãni tupnałãninì tupnanihẽ matupyoknanihẽ	tubukuø tubukunnin tubuhẽ matupyoktuhẽ	tubukuycuy tubukuycuyniŋ tubuycihẽ matupyoktuycihez	tupmalã tupmalãnin tubehẽ matupyoktehẽ			
1di									tupcoko tupcokonin tubace matupyoktace	tubumcum tubumcumnim tubumcumhẽ matupyoktumcumhẽ	tupceke tupcekenin tubace matupyoktace			
1pi									tubukum tubukumnim tubumhẽ matupyoktumhẽ		tubiki tubikinin tubihẽ matupyoktihẽ			
1de						tupnałãncĩyã tupnalãncĩyãntiŋ tupnancĩyehẽ matupyoknancĩyehẽ			tupcokoja tupcokonanin tubacehẽ matupyoktacehẽ	tubumcumma tubumcummanin tubumcummehê matupyoktumcummehẽ	tupcekena tupcekeyanin tubacehẽ matupyoktacehẽ			
1pe						tubukumma tubukummanin tubummehẽ matupyoktummehẽ	tubikiya tubikiyanin tubiehẽ matupyoktiehẽ							
2s	atupma1ã atupmalãnin atubehẽ \{a-ma\}tupyoktehẽ			\{a-ma\}tupceke \{a-ma\}tupcekenin \{a-ma\}tubace \{a-ma-ma\}tupyoktace	\{a-ma\}tupno \{a-ma\}tupniknin \{a-ma\}tube \{a-ma-ma\}tupyokte							atuboko atubokonin atube amatupyokte	atubukuce atubukucenin atubuce \{a-ma\}tupyoktuce	atupno atupniknip atube \{a-ma\}tupyokte
2d	atupmaPancin atupmaPancinnin atubaycihez \{a-ma\}tupyoktaycihẽ								atupcoko atupcokonin atubace amatupyoktace	atubumcum atubumcumnim atubumcumhẽ $\{a-m a\} t u p y o k t u m c u m h e ̃$	atupceke atupcekenin atubace \{a-ma\}tupyoktace			
2 p	atupma?anin atupmaPaninin atubannihez \{a-ma\}tupyoktaynihẽ								atubukum atubukumnim atubumhẽ amatupyoktumhẽ		atubiki atubikinin atubihe \{a-ma\}tupyoktihẽ			
3s	utupmarã utupmalãnin utubehe \{u-ma\}tupyoktehẽ	maitupceke maitupcekenin maitubace \{mai-ma\}tupyoktace	maitupno maitupniknin maitube \{mai-ma\}tupyokte	matupceke matupcekenin matubace \{ma-ma\}tupyoktace	matupno matupniknin matube \{ma-ma\}tupyokte	natupno natupniknin natube \{na-ma\}tupyokte	natupceke natupcekenin natubace \{na-ma\}tupyoktace	natubiki natubikinin natubihẽ \{na-ma\}tupyoktihẽ	tuboko tubokonin tube matupyokte	tubukuce tubukucenin tubuce matupyoktuce	tupno tupniknin tube matupyokte			
3d	utupmaPancin utupma?ancinnin utubaycihez \{u-ma\}tupyoktaycihẽ								utupcoko utupcokonin utubace \{u-ma\}tupyoktace	utubukuce utubukucenin utubuce \{u-ma\}tupyoktuce	utupceke utupcekenin utubace \{u-ma\}tupyoktace			
3 p	utupmaPanin utupmaRaninin utubaynihez \{u-ma\}tupyoktaynihẽ								utuboko utubokonin utube \{u-ma\}tupyokte		utupno utupniknin utube \{u-ma\}tupyokte			

jo-go-yay na-khutt-i-ca-i-hatt-i-bir-i.

whatever-NMLZ-ADD 3[s]>2-steal-2pO-V2:eat-2pO-V2:move.away.TR-2pO-V2:do.for-[SBJV.]2pO
'It (a cat) may steal everything from you and eat it all up!' [story.cat.204]

Syntactified Ergativity

- Ergative case unconditionally assigned by all and only transitively inflected verbs, except for some pronouns (e.g. 1sS in Belhare, 1excl in Chintang) Belhare (Bickel 2003)
a. ina-ŋa wa khuir-t-u.

DEM-ERG chicken[-NOM] [3sA-]steal-NPST-3sO
'That one steals / will steal the chicken.'
b. ina wa khu?-yu.

DEM[-NOM] chicken[-NOM] [3sS-]steal-NPST
'That one steals chicken.' ('S/he is a chicken-stealer')

- Occasional with reflexes even in syntax:

Belhare (Bickel 2004)
a. khoy-ma nui-ka.
play-INF may-2s[NPST]
'You may play.'
b. lu-ma nui-ka.
tell-INF may-2s[NPST]
'Someone may tell you.' (not: 'You may tell him/her.')

Possessive classes

Limbu

	Class I	Class II	Class III
Effect	Nasalization	Stem reduction	
1sg form	a-mbhoya? 'my uncle'	a-nsa? (< nusa?) 'my sibling'	a-yuma 'my grandmother'
sample members	friend, father, mother, aunt etc.	head, older sister, moustache, sibling, etc.	(default)

WHY?

Inflectional Synthesis

Polyagreement (sensu stricto: no clitics, no optional agreement etc.)

Ergativity: proportion of $S=A$ case per conditions

1				0.8	1.0
0.0	0.2	0.4	0.6	$\mathrm{~S}=\mathrm{A}$	
$\mathrm{S} \neq \mathrm{A}$					

Possessive classes

The Eurasian Enclave Theory: Historical Scenario

< ca. 15kya

(Rasmussen et al. 2011 Science)

Australasian "Ypykuéra" Population, no longer present here (Skoglund et al. 2015 Nature)

The Eurasian Enclave Theory: Historical Scenario

$>$ ca. 15kya

(Rootsi et al. 2007 Eur. J. Hum. Gen)

Large-scale language spreads

Empires and urbanized states in - the steppe (e.g. Nichols 1998*)

- the Tibetan plateau and the SA/SEA "valleys" (e.g. DeLancey 2013+)

The Eurasian Enclave Theory: Prediction I

Modern Eurasia: several recent spreads, high contact Trans-Pacific: old and heterogenous

Evidence from clustering approaches: combined AUTOTYP and WALS data

Principal Component Analysis (PCA) on feature prop per major clade

- PCA with imputation (pcaMethods, Stacklies et al. 2007 in Bioinformatics)
- map the first 3 PCs (accounting for 62% of the total variance) to RGB color space

Principal Component Analysis (PCA) on feature prop per major clade

Top contributors to each PC:

Density-based spatial clustering (dbSCAN)

- Link languages with the same feature values if they form a cluster with at least 3 members within a pre-given distance threshold
- Aggregate across all features and 7 distance thresholds (100km...10'000km)

\rightarrow Line densities

Step 2: aggregating links from all distance thresolds [1...n]

in tesselations of 300 km and compare results with H_{0}

Density-based spatial clustering (dbSCAN)

Evidence from hypothesis testing: combined AUTOTYP and WALS data

Testing the theory

1. Estimate diachronic biases per family/major clade, using sevaral methods (Bickel 2013 Lang Typ and Hist Contingency)
2. Perform Fisher Exact tests on the difference in bias directions between areas, across all 356 variables in WALS and AUTOTYP covering at least 250 languages each
3. Estimate False Discovery Rates*
4. Subtract variants of variables, e.g re voicing distinctions in WALS:

- MADVOI: \{none, in_plos_\&_fric, in_plos_only, in_fric_only\}
- MADVOI2: \{none, some\}
\rightarrow at least ~ 35 true discoveries of Trans-Pacific \neq Rest of the World (Bickel 2015 Language Dispersals)
\rightarrow at least ~ 10 true discoveries of Enclaves \neq Rest of Eurasia (provisional, non-validated result)

A closer look at the results: Residual Analysis

Trans-Pacific features present in at least some Kiranti languages

- tone
- voicing distinction
+ polyagreement (under various analyses)
+ possessive prefixes
+ headmarked possession
+ desideratives (if we count optatives as desideratives)
- postposed modifier NPs
+ preposed demonstratives
- non-final word order
- adpositions (although some languages, e.g. Yakkha, have recently developed true adpositions)
+ non-accusative alignment in agreement triggers
+ SO alignment in 'give' verbs

Trans-Pacific features not found in Kiranti languages

- laterals
- velar nasals
+ optional or no nominal plural

Other Eurasian enclave features found in at least some Kiranti

+ high verb inflectional synthesis
+ retention of dep-marking in nominalizations
+ semantic gender
+ preposed relative clauses
+ mixed predicative adj encoding
+ double negation
+ contrastive nasal vowels
+ category-based stem allomorphy

Candidate enclave features for which we lack sufficiently large databases

- aspirated stops alternating with breathy stops
- bipartite stems
- recursive inflection
- triplication (independent of doubled reduplication)
- co-argument sensitivity (in prep)
- conjunct/disjunct
- antipassives for 1 P
- altitudinal case
- spatially specific interjections
- color-sensitive article

Eurasian spread features which at least some Kiranti languages escape

+ voicing distinction	- possessive prefixes
+ tone	+ preposed case markers
+ large vowel systems	+ postposed demonstratives
- lex conjugation classes	+ postposed modifier NPs
- mixed A, P agr slots	+ non-final order
- polyagreement	- WH oblig. initial
- head-marked A	+ preposed adpositions
- head-marked P	+ sem and formal gender
- head-marked S	+ obligatory noun plural
- headmarked POSS	- evidentials (incl. hearsay)
- desideratives	+ adpositions
+ Generic-noun-based indef	
- possessive classes	

+ accusatives in pronouns
$-S \neq A$ case (at least some)
$-S \neq A$ agreement triggers
+ DOM
+ agreement split on PoS
- SO alignment
- normal dep-marking in NMLZ

Eurasian spread features which Kiranti languages do not escape

+ laterals
+ velar nasals
- noun incorporation
+ dependent-marked S, A, or P
+ dependent-marked possession
+ passives (although rarely used in Kiranti languages)
- optional or no nominal plural
+ plural on animate nouns only
- same word for `hand' and `finger' (?)

The Eurasian Enclave Theory: Prediction II

Enclaves should specifically preserve ...

- local features: features that are easy to transmit over generations (easy to acquire in L1) but unlikely to spread in contact (difficult to acquire in L2) (e.g. Dahl 2004*, Trudgill 2011\#, DeLancey 2013+)
- difficult features: features that are disfavored by processing principles: for processing principles to lead to change, one needs increased variance for selection to operate, and this in turn requires increased contact
\rightarrow two psycholinguistic case studies

A case study on a local feature:
polysynthesis

What is (poly)synthesis?

A multivariate typology (Bickel \& Nichols 2007*, Bickel \& Zúñiga 2015+)

1. Available building blocks

- elements that \pm select, i.e. need a superordinate host
- elements that \pm control, i.e. require or govern subordinate elements

SELECT	CONTROL	label	content
-	+	V	lexical
-	-	clitics	IS markers
V	-	inflections	agr., TAMP, nonfinite forms
V	+	V2	derivations, lexical
VP	-	phrasal affixes	optative, some clause linkage markers
XP	-	free phrasal affixes	nominalizers, conjunctions, IS markers, etc.
X	-	reduplication	intensifying functions

2. Phonological cohesion: rule and constraint domains in phonology
3. Syntactic cohesion: rule and constraint domains in syntax

Chintang synthesis

voicing after V/N

onset requirement clitic and prefix hosting

Phonological cohesion does not seem to dependent much on contact

- No effect of areas on phonological domain size trends but significant effects of family membership and rule type (Bickel, Hildebrandt \& Schiering 2009 in Phonological Domains)

Syntactic selectivity matters most for L1 vs. L2 acquisition contrast

- with selective morphemes, roots come in more diverse environments \rightarrow bigger learning challenge (Stoll 2009+; Stoll, Mažara \& Bickel 2015*)
- well-established effects on L2 acquisition (e.g. Dahl 2004\#, Trudgill 2011\% etc; Bentz et al. 2015 PLOS ONE)

Syntactic selectivity matters most for L1 vs. L2 acquisition contrast

- but amazing acquisition performance in L1

Syntactic selectivity matters most for L1 vs. L2 acquisition contrast

- affix morphology acquired even faster than adult degrees of code-mixing!

Result: synthesis degree has the typical signature of a local feature

0	5	10	15	20

A case study on a difficult feature: strong ergativity

Processing disfavors ergativity in case marking

- The processing system prefers unmarked initial NPs to be A or S, not P (Bickel et al. 2015 PLOS ONE)

Processing disfavors ergativity in case marking

- BUT: no change without variation, and contact is a key source of variation
\rightarrow expect a (weak) correlation strength of ergativity in case-marking and degree of sociolinguistic isolation

Proportion of $S=A$ case assignment across conditions per language

(CE) Kiranti case ergativity is particularly strong

1. Widespread in the system: only very few pronouns lack ergative case forms, for example

- Belhare: only first person singular
- Chintang: only exclusive forms (resulting from haplology)
- Yakkha: first and second person pronouns
- Puma, Yamphu: no constraint

Note: absence of case is driven by form, not meaning (Bickel 2000 SL):
Yakkha (Schackow 2014 UZH Diss):
a-phay=na men=na, a-koyma=ŋa=le
1sG.poss-MyZH=erg neg.cop[3]=nmlz.sG 1sG.poss-MyZ=erg=ctr
ta-ga=na raecha
bring[pst;3.P]-2.A=NMLz.SG mir
'Not the uncle, but you, auntie, really brought her here (the second
wife)!'
[06_cvs_01.042]

(CE) Kiranti case ergativity is particularly strong

- ERG has even recently expanded (Bickel \& Gaenszle 2015 in JSALL)

Belhare (Bickel 1996)
$\begin{array}{lll}\text { a. un-na } & \text { mari } & \text { niu-t-u. } \\ \text { 3s-ERG } & \text { person[sNOM] } & \text { [3sA-]see-NPST-3O }\end{array}$
'S/he sees a (specific) person.' or 'S/he sees the person.'
b. un mapi ni-yu.
(antipassive)
3sNOM person[sNOM] [3sS-]see-NPST
'S/he sees people.' but not *‘S/he sees the/a (specific) person.'
c. un-na mapi-ni-yu.

3s-ERG eP-see-NPST
'S/he sees us (e).'

(CE) Kiranti case ergativity is particularly strong

2. ERG iff transitive morphosyntax; no free semantic parameter or any kind of differential/split/fluid subject marking

- Occasionally very limited, idiosyncratic variation, e.g.
in Chintang ergatives are frequent on 1 pi and 2 p vs. rare on $1 \mathrm{~s}, 1 \mathrm{di}$, 2 s and 2d (ungrammatical on 1de and 1pe) - depending on many factors including language ideology (Schikowski, Paudyal \& Bickel 2015 in Valency Classes)
- All morphosyntactic transitivity alternations either
- have no impact on ERG assignment or
- are driven by something else than agency or agent reference

Morphosyntactic transitivity in CE Kiranti (exemplified by Chintang)

Morphosyntactic transitivity in CE Kiranti (exemplified by Chintang)

Critical factor: Proto-Agent explication; focus on cause vs result
a. Sa-ŋa u-lett-o-kha phuŋ?
who-ERG 3[p]A-plant-3[s]P-NMLZ ${ }_{2}$ flower
'Who planted the flower?' [CLLDCh3R07S01.953]
b. Makkai-ce u-lett-a-ŋs-e.
maize-ns 3[p]S-plant-PST-PRF-IND.PST
'The maize plants have been planted.' [field notes 2010]
a. Saĩli, kana-phak na ba-tta=kha ghoy hay
third.daughter 1pePOSS-pig TOP PROX-EXT-NMLZ ${ }_{2}$ grow.big[.SBJV.NPST.3sS] COND
na aŋ...
TOP QTAG
'Saĩli, suppose our pig grew as big as this...' [CLLDCh1R06S03.0151]
b. Ba=go phak them-ma ba-tta ghoys-o- $\eta s-e$?

PROX-NMLZ $_{1}$ pig what-ERG PROX-EXT grow.big-3[s]P-PRF-IND.NPST[.3sA]
'What has let this pig grow this big?' [elicitation 2010]

Morphosyntactic transitivity in CE Kiranti (exemplified by Chintang)

S-NOM S.AGR

A-NOM O-NOM S.AGR
 A-ERG O-NOM A\&O.AGR

Critical factor: quantifiability; specificity of Proto-Patient

a. huĩsa-ŋa ma?mi copt-o-k-o.

DEM-ERG person[-NOM] [3sA-]look-3sO-NPST-3sO (TRANS)
'S/he looks at the people.'
b. hungo ma?mi cop-no.

DEM[-NOM] person[-NOM] [3sS-]look-NPST (DETRANS)
'HS/he looks at people.' (in general)
c. hungo sumbhay kaphapa kon-no-ta.

DEM[-NOM] three helpers[-NOM] [3sS-]search-NPST-CNT (DETRANS)
'I'm searching for three helpers.'

-spec +spec
non-quantifiable

Morphosyntactic transitivity in CE Kiranti (exemplified by Chintang)

S-NOM S.AGR
 A-NOM O-NOM S.AGR

A-ERG O-NOM A\&O.AGR Proto-Patient

Critical factor: P explication in possessive of experience constructions
a. hana-ko i-rek kat-no?

2s-GEN 2sPOSS-anger[-NOM] [3sS-]go-IND.NPST
'Are you angry?'
b. hana-ŋa hun-ce i-rek a-katt-u-c-e?

2s-ERG DEM-ns[-NOM] 2sPOSS-anger[-NOM] 2[s]A-bring.up-3O-3nsO-IND.PST
'Are you angry with them?'

Conclusions

Kiranti languages are special because they are located in the Eurasian Enclaves (together with other languages in the Himalayas, the Caucasus, the north Pacific coast, and the Andamans), where they were shielded off from the major spreads that started ca. 15kya
\rightarrow They are key languages for reconstruction within ST/TB/TH (cf. DeLancey's talk)
\rightarrow They allow a glimpse into how Eurasia looked like before 15kya: quite similar to what we nowadays find in the Americas, in PNG and in Australia

